Archive | Integration formulas RSS feed for this section

Table of Integrals

1. \(\int dx=x+C\) 2. \(\int x^{\alpha}dx=\frac{x^{\alpha+1}}{\alpha+1}+C\) 3. \(\int \frac{dx}{x}=\ln |x|+C\) 4. \(\int a^x dx=\frac{a^x}{\ln a}+C\) 5. \(\int e^x dx=e^x+C\) 6. \(\int \sin x dx=-\cos x+C\) 7. \(\int \cos x dx=\sin x+C\) 8. \(\int \frac{dx}{\cos^2 x}=tg x+C\) 9. \(\int \frac{dx}{sin^2 x}=-ctg x+C\) 10. \(\int \frac{dx}{\sqrt{a^2-x^2}}=\arcsin\frac{x}{a}+C\) 11. \(\int \frac{dx}{\sqrt{x^2 \pm a^2}}=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C\) 12. \(\int \frac{dx}{x^2+a^2}=\frac{1}{a}arctg\frac{x}{a}+C\) 13. \(\int […]

Integrals of Trigonometric Functions

List of integrals involving trigonometric functions \( \int \sin x ~  dx = -\cos x \)   \( \int \cos x ~ dx = \sin x \)   \( \int \sin^2x ~ dx= \frac{x}{2}-\frac{1}{4}\sin(2x) \)   \( \int \cos^2x ~ dx = \frac{x}{2}+\frac{1}{4}\sin(2x) \)   \( \int \sin^3x ~ dx = \frac{1}{3}\cos^3x-\cos x \)   \( \int \cos^3x ~ dx […]

Integrals of Logarithmic Functions

List of integrals involving logarithmic functions \( \int \ln(cx)dx = x\ln(cx) – x \)   \( \int \ln(ax+b)dx = x\ln(ax+b) – x + \frac{b}{a}\ln(ax + b) \)   \( \int (\ln x)^2dx = x(\ln x)^2 – 2x\ln x + 2x \)   \( \int (\ln (cx))^ndx = x(\ln x)^n – n\cdot\int (\ln (cx))^{n-1}dx \)   \( \int \frac{dx}{\ln x} […]

Integrals of Exponential Functions

\( \int e^{cx}dx = \frac{1}{c}e^{cx} \)   \( \int a^{cx}dx = \frac{1}{c\cdot \ln a}a^{cx}, (\text{for } a>0, a\ne1 ) \)   \( \int x \cdot e^{cx} = \frac{e^{cx}}{c^2}(cx-1) \)   \( \int x^2 \cdot e^{cx} = e^{cx}\left(\frac{x^2}{c}-\frac{2x}{c^2} + \frac{2}{c^3}\right) \)   \( \int x^n \cdot e^{cx}dx = \frac{1}{c}x^ne^{cx}-\frac{n}{c}\int x^{n-1}e^{cx} dx \)   \( \int \frac{e^{cx}}{x} dx = \ln|x| + \sum\limits_{i=1}^\infty […]

Integrals of Rational Functions

Integrals involving \(ax + b\) \( \int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)}, \quad (\text{for } n \ne 1) \) \( \int \frac{1}{ax+b}dx = \frac{1}{a}\ln|ax+b| \) \( \int x (ax+b)^ndx = \frac{a(n+1)x-b}{a^2(n+1)(n+2)}(ax+b)^{n+1}, \quad (\text{for } n \ne -1, n\ne-2) \) \( \int \frac{x}{ax+b}dx = \frac{x}{2} – \frac{b}{a^2}\ln|ax+b| \) \( \int \frac{x}{(ax+b)^2}dx = \frac{b}{a^2(ax+b)} – \frac{1}{a^2}\ln|ax+b| \) \( \int \frac{x^2}{ax+b} dx = \frac{1}{a^3} […]

Page 1 of 212